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We consider trsnsonic motions of an ideal gas which are represented 
in the velocity hodograph by a curve or by a surface. In the second 
part of the note we determine a class of self-similar solutions re- 
presenting plane and axially synunetric flows. 

1. Three-dirensfonal flors with a degenerate hodograph. 1. The equa- 
tions of a transonic three-dimensional gas flow in Cartesian coordinates 
read 

vu,-V”--w*===oo, U” - 2, = 0, uz-w -0, x- vz -- WY = 0 

1’ _; (K -i_ i) & , 
(1.1) 

Here K is the adiabatic exponent, U, V, W the perturbation velocity 
components along the X. y. z axes, the undisturbed velocity vector having 
the magnitude of the critical speed a and being directed along the r * 
axis. 

Let us consider double waves, that is flows for which only the two 
quantities v and w are independent, and 

74 = LL (7., 70) (1.2) 
Using (1.2) and equations (1.1) we obtain 

(uu,a - 1) z’y + 2uu,u,z., -j-- (uuwZ - $) 21’* =~ 0 (1.3) 

Every plane x = constof the physical space is mapped in the velocity 
hodograph space onto the same surface 2. Hence we may consider in equa- 
tions (1.3) the variables v and I as independent. and the variables y 
and z as functions of these independent variables. We have 

7’ ==z,A, V 7’z = - y,A, u’z = .?l$, A =_ 7’u27’i - 7’ 2 z 

and by equation (1.3) 

(uu,? - 1) zw - 2uu,u,y, -f- (uuw’ - 1) y* -= 0 

Consider now the function x determined by the equation [I ] 

(1.4) 
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y,=ux+vy+wz-~ (u = Pxt v = P,, w = rp,) 

Its differential is dx = (y + xu,)dv + (Z + xuw)dw. Hence 

X0 = Y + XUU’ xw .:=- _I ” -l- zaw 

Differentiating equations (1.6) for x = const.we obtain 

YV = Xv,, - X%’ Yw = Xuw - xuywt zw = zww - zuicw (i-7) 

Now we substitute relations (1.7) into equation (1.4). Setting the 
term not containing I and the term containing E in the first degree equal 
to zero, we obtain two equations which determine the functions w and x : 

(uuw2 - I) 7LCD - zuu,u,u,, _t (UU$ - 1) uujw = 0 

(uuw2 - 1) Xca - 2UuUu*~1)w _i- (uuu2 - 1) xww == 0 (1.6) 

After equations (1.8) are solved, formulas (1.6) [ 1 1 give the trans- 
formation to the physical space. In the case of conical flows we have 
x= 0 and y/r = -uy, Z/X = -II l#* 

2. We note one particular solution of the first equation (1.8). 

One easiI!ysees that this equation admits the transformation group 

iJ(v. 1~) = al *utalu, aiw), where al is an arbitrary non-vanishing constant. 

Therefore equations (1.8) have a solution of the form 

zf = zT’*i1 (Cl), 5, - lo; U (I.91 

where the function f, satisfies the ordinary differential equation 

(El2 - 251Vlf1’2 + + f13) fl” + $ fl”fl’ 2 - $ Wl i- + fl = 0 (1.10) 

This equation is itself invariant under the transformation group 

@l(Q .; a2 %f(a,f,), therefore its order may be lowered. Indeed, setting 

f, = Sj3Fl (tllhl = ln ISIt we transform equation (1.10) into an equa- 
tion which does not contain the independent variable explicitly. Next, 

setting dFl/dqi= VI and taking F1 as the independent variable, we obtain 

the first order equation 

Solving equation (1.11) and carrying out the second integration 

where 76 is an arbitrary constant, we go over to the physical space by 
the formulas 

Y wLfa dF1 
-=--r 
X It drll 

(1.12) 

3. bet us consider axially symmetric flows of the class discussed 
above. We have that 
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u== u(o), w=vr++w2 (1.13) 

and the first equation (1.8) implies that 
WU” -Uu’~+U’=o (1.14) 

Interchanging dependent and independent we obtain the well known equa- 
tion solved by Busemann [ 2 I: 

cl)& =w’B--u (1.15) 

4. The differential equation of the characteristics of the first 
equation (1.8) reads 

(uu2, - 1) dwa + ~uuv~~dvd~ + (uuvs - i) dv= = 0 (1.16) 

Noting that along the surface x we have du = uvdv + uydm , we obtain 
from (1.16) the equation 

u.du2 = dv= + dw2 (1.17) 

This equation determines characteristic curves S+ and S_ on the sur- 
face 2, One can show that simple waves are described by such an equation, 
In this case the whole flow is mapped onto a single S curve in the velo- 
city hodograph. 

The formulas 

u=(+~~ ~=~~~~2(~)~~, w=~s~~~(~)d~ (iA8) 

solve equation (1.17). The corresponding flow in the physical space is 
given by the relation 

(% r)-% + cos f2 (7) y + sin f8 (T) 2 + FB (7) = 0 (iA9) 

where f,(r ) and F2 (t ) are arbitrary functions of r . This solution can be 
used in computing certain aerofoils. 

2. Self-similar plane and axially symmetric flows. 1. We consider now 
plane and axially symmetric flows. In this case we have by (1.1) 

- UUx f WY + 6tiir = 0, Ut=OX (2.i) 

Here o is the component of the perturbation velocity (1) in the direc- 
tion of the radius r. 6 = 0 for plane flows and 8 = 1 for axially sym- 
metric flows. 

The system of equations (2.1) is invariant under the continuous trans- 
formation group 

u (2, r) = a~g~(~-~)u (a&, asr), R @, r) = as3(1--p)~ (aSpz, asr) (2.2) 

where a and /3 are arbitrary constants. Hence system (2.l)must possess 
self-sizilar solutions of the form [3, 7 ] 

u = z*@+l)f, (Q, ” == 2w+q, (g2), S* = rz@ (2.3) 

In fact, substituting the expressions (2.3) into the equations (2.1) 
we obtain 
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fs’ = 3 f? + 1) f* + PE;,f4’, - 2 @ i- 1) i3’ - V&fsfa + fa’ + V4 /4a = C (2.4) 

Eliminating the function f4 from the system (2.4) we obtain a single 

second order equation for the function f, : 

WS2”fs - 1) f3N + w -I- 7) P42fsf3’ + w2*f3’2 i- 2 (432 + 76 + 3) fs2 - 6f3’ / 52 = 0 (Xi 

It is easy to see that equation (2.5) is itself invariant under the 

transformat ion group @3 (5,) = aii2f3 (~~~3’2~ where a9 is an arbitrary 

constant. Setting f, = f2-2F3(~2), q2 = In It21 we transform equation 

(2.5) into an equation which does not contain the independent variable 

expl ic ity. Next. setting fy = f,-*F3(q2), q2 = In It,1 , and taking F2 

as the independent variable we obtain the first order equation 

dY.q (6 - 5) Y3 -/- 2 (3 - 6) F3 - f3T8,s -7P’rsFs - 6Fa2 
x= ys WFz3 - i 1 

The functions f,, and F 3 are connected by the relation 

42-s 
fa = 38 + 3 __+ (Fs’ - 2Fs - 23 Fat - p2FsFa’) = <2-3B (n2) 

The perturbation velocity components are given by 

(2.6) 

(2.7) 

(2.8) 

2. Consider the case @ = 0. Then u = x*f~tr), a= z3fu(r), so that the 

variables z and r are separated and we obtain solutions studied by Zigu- 

1 ev I 4 I fa -_ ~,-ice+i)fs (c2), fa =c 2-3(B+1)fG (Qr <a = Sal@, i/9 = y (2.9) 

Using (2.4) we obtain for the functions f5((‘,) and f,(c,) the system 
of equations 

- 2 (Y + i) fs + %2f5’ = fG’, - fGf5’ + (6 - 3 - JY) fs + YC2f2 = 0 (2.10) 

Consider, in particular, the case y = 0. Then u = r-* f,(x), w= 

ra7f6(x), that is, the variables x and r are separated and we obtain an- 

other type of flows studied in the paper just quoted. 

3. Consider now the case p = -%. It is easy to verify that in this 

case equation (2.6) admits the solution 

y’a=2(i -+-@(~+&a+ fs) (2.11) 

Using (2.11) one easily obtains the relation 

A* 
k = A + 2 (I + 8) 522 (2.12) 

The perturbation velocity components are now given by 

A2 .-12 
24 = As + 2 (1 + 8) r?, 

Aa 
o = - iv + 2 (1 + 6) (3 + 6) if-8 

ra (2.13) 

If the gas flow considered is two-dimensional, so that 6 = 0, then the 

relations (2.13) are the solution due to Falkovich [ 5 ] which describe 
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the shockless flow in a nozzle near the sonic line. If 6 = 1, the equations 
(2.13) describe an axially symmetric flow in an axially symmetric nozzle. 
The equation of the sonic line reads 

A 
x = - 2 (1 + 6) r8 

(2.14) 

This equation shows that in an axially symmetric nozzle the sonic line 
is closer to a vertical straight line than it would be in a plane nozzle 
for the same value of the constant A. This constant equals the derivative 
u x at the center of the nozzle. 

3. Plane and axially emmetric flows limiting to 

1. We consider first plane transonic flows. In this 
tions (2.1) are invariant under the transformations 
the method of the paper [ 6 ] in which it was shown 

self-similar ones. 

case 6 = 0 and equa- 
r = rO + r’. We Use 
how to obtain, by a 

1 imit ing process, a new class of solutions from a class of self-similar 
solutions containing an arbitrary exponent which may be increased in- 
definitely. The solutions given in Z(2) have this property. After some 
calculations we obtain 

u =f- e-2mrft (&), w = e-3mrfs 1&iA .$ = xemr (3.1) 

where the functions f, and f, satisfy the system of ordinary differential 
equations 

- f7f7’ - 3mjs + mf9f8’ = 0, - 2m.f7 + m&A = is' (3.2) 

(a limiting form of the equations ‘in 2(2) ). 

Eliminating from (3.2) the function f8 we obtain a single second order 
differential equation for the function f7: 

(m2Es2 - j,) j,’ - f,‘* - 3m%j7’ + 4m2f7 = 0 (3.3) 

This equation is invariant under the group d?&(t3;’ = a5-2f7(a5~~) and 
can be reduced to a first order equation 

Here 

(34 

(3.5) 

The perturbation velocity components are given by 
u = xaFa 

0 = g (m2F4' - FdFa’ - 2Fde) 
(3.6) 

If I = 0, then the functions f7 and fs are constnat and we have a uni- 
form flow. For II f 0 the integral curves of equation (3.4) are shown on 
Fig. 1. The essential characteristic of the flows just consldered is their 
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asymmetry with respect to the axis r = 0. 

Fig. 1. 

2. We consider now plane and axially symmetric flows simultaneously. 
Using the invariance of equations (2.1) with respect to the transforma- 
tions x = x0 + x’ we obtain from relations (2.3) a new class of solutions, 

These solutions. obtained by letting the exponent p increase indefinitely, 
have the form 16 ] 

u = e”Y9 (Ea), w = e3”“flo (Q, & = rem (3.7) 

where the functions fg and f,,_, are determined by the equations 

- 2nfea - nfrfefe’+ ha' + WI0 / s4 = 0, f8' = 3nf10 + d&f10 (34 

(limiting case of equations (2.3) ). The function f9 must satisfy the 
equation 

(n244V* - 11 fs’ + 9sZ~~ofo’ + P34%‘2 + a+w - Wo’ i s4 = 0 

As before we introduce new variables 

r14= In L f9 = f4-*Fs (Q), ya _dFS 
d?4 

and obtain a single first order equation 

(3.91 

(3.10) 

dyb 
dFb= 

(6 - 5) ‘Ya + 2 (3 - 8) Fe - n*Y,z 
Yb (r&V& - 1) 
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